BST2/Tetherin Inhibits Dengue Virus Release from Human Hepatoma Cells

نویسندگان

  • Xiao-Ben Pan
  • Jin-Chao Han
  • Xu Cong
  • Lai Wei
چکیده

UNLABELLED Type I interferons (IFN) have been shown to play an important role for inhibiting Dengue virus (DENV) infection. Identifying IFN-induced cellular proteins are essential for understanding its mechanisms against DENV. Here we established stable Huh7-derived cell lines expressing the IFN-induced cell membrane protein BST2 (Huh7-BST2) or its variant bearing a V5 tag at the C-terminal (Huh7-BST5CV5). These cell lines were infected with DENV to determine proteins modulating their anti-DENV response. We found that expression of BST2 did not affect the efficiency of DENV infection and intracellular replication. Rather, it significantly reduced the virion yield of the infected cells, particularly at low MOI infection. In addition, BST2 also decreased the foci formation and the size of infectious foci in cultured Huh7 monolayers with media containing methocellulose. The addition of the V5 tag at C-terminal inhibited the GPI modification of BST2 and blocked its shift from endoplasm to cytoplastic membrane. BST2CV5 did not affect DENV infection and foci formation in Huh7 cells but reduced virion yield by 1 log at low MOI infection. Interestingly, intracellular BST2CV5 expression was reduced by high level of DENV production. CONCLUSION Our results imply that BST2 is a functional mediator of the IFN response against DENV infection. BST2 inhibits the release of DENV virions from Huh7 cells and limits viral cell-to-cell transmission. BST2CV5 variant is unable to inhibit DENV release but impairs viral infection in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BST2/Tetherin Inhibition of Alphavirus Exit

Alphaviruses such as chikungunya virus (CHIKV) and Semliki Forest virus (SFV) are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane prote...

متن کامل

Inhibition of Lassa and Marburg virus production by tetherin.

Recently, tetherin has been identified as an effective cellular factor that prevents the release of human immunodeficiency virus type 1. Here, we show that the production of virus-like particles induced by viral matrix proteins of Lassa virus or Marburg virus was markedly inhibited by tetherin and that N-linked glycosylation of tetherin was dispensable for this antiviral activity. Our data also...

متن کامل

Antiviral Inhibition of Enveloped Virus Release by Tetherin/BST-2: Action and Counteraction

Tetherin (BST2/CD317) has been recently recognized as a potent interferon-induced antiviral molecule that inhibits the release of diverse mammalian enveloped virus particles from infected cells. By targeting an immutable structure common to all these viruses, the virion membrane, evasion of this antiviral mechanism has necessitated the development of specific countermeasures that directly inhib...

متن کامل

Species-Specific Activity of SIV Nef and HIV-1 Vpu in Overcoming Restriction by Tetherin/BST2

Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac)/HIV-2 lineage do not have a vpu gene, this activity has likely be...

متن کامل

In COS Cells Vpu Can Both Stabilize Tetherin Expression and Counteract Its Antiviral Activity

The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degrada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012